Generalized Gauss-Radau and Gauss-Lobatto formulas with Jacobi weight functions

نویسنده

  • Guergana Petrova
چکیده

We derive explicitly the weights and the nodes of the generalized Gauss-Radau and Gauss-Lobatto quadratures with Jacobi weight functions. AMS subject classification: 65D32, 65D30, 41A55.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rates of Convergence of Gauss, Lobatto, and Radau Integration Rules for Singular Integrands

Rates of convergence (or divergence) are obtained in the application of Gauss, Lobatto, and Radau integration rules to functions with an algebraic or logarithmic singularity inside, or at an endpoint of, the interval of integration. A typical result is the following: For a generalized Jacobi weight function on [-1,1], the error in applying an «-point rule to f(x) = \x -y\~* isO(n~2 + 2i), if y ...

متن کامل

On Gautschi's conjecture for generalized Gauss-Radau and Gauss-Lobatto formulae

Recently, Gautschi introduced so-called generalized Gauss-Radau and Gauss-Lobatto formulae which are quadrature formulae of Gaussian type involving not only the values but also the derivatives of the function at the endpoints. In the present note we show the positivity of the corresponding weights; this positivity has been conjectured already by Gautschi. As a consequence, we establish several ...

متن کامل

Gauss-Jacobi-type quadrature rules for fractional directional integrals

Fractional directional integrals are the extensions of the Riemann-Liouville fractional integrals from oneto multi-dimensional spaces and play an important role in extending the fractional differentiation to diverse applications. In numerical evaluation of these integrals, the weakly singular kernels often fail the conventional quadrature rules such as Newton-Cotes and Gauss-Legendre rules. It ...

متن کامل

Positive quadrature formulas III: asymptotics of weights

First we discuss briefly our former characterization theorem for positive interpolation quadrature formulas (abbreviated qf), provide an equivalent characterization in terms of Jacobi matrices, and give links and applications to other qf, in particular to Gauss-Kronrod quadratures and recent rediscoveries. Then for any polynomial tn which generates a positive qf, a weight function (depending on...

متن کامل

The existence and construction of rational Gauss-type quadrature rules

Consider a hermitian positive-definite linear functional F, and assume we have m distinct nodes fixed in advance anywhere on the real line. In this paper we then study the existence and construction of nth rational Gauss-Radau (m = 1) and Gauss-Lobatto (m = 2) quadrature formulas that approximate F{f}. These are quadrature formulas with n positive weights and with the n−m remaining nodes real a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015